无人驾驶道路维护可能对所有利益相关者都非常有利,其关键目标是提高所有公路参与者的安全性,更有效的交通管理以及降低的道路维护成本,因此道路基础设施的标准足以使用它在自动驾驶(AD)中。本文介绍了如何扩展技术状态以实现这些目标。在使用公路标记机作为系统的“遥控道路标记系统”项目中,讨论并开发了基于远程操作的不同操作模式。此外,考虑到硬件和软件元素的功能系统概述通过实际的公路标记机对实验进行了验证,应作为在此和类似领域的未来工作的基准。
translated by 谷歌翻译
随着自动驾驶功能(AD)功能的进步,近年来,远程运行越来越受欢迎。通过启用自动化车辆的远程操作,可以将远程处理作为可靠的后备解决方案,用于操作设计域限制和广告功能的边缘案例。多年来,文献中提出了有关人类操作员如何远程支持或替代广告功能的各种不同的远程关系概念。本文介绍了关于道路车辆远程运行概念的文献调查的结果。此外,由于行业内部的兴趣日益增加,对专利和公司整体活动的见解也提出了。
translated by 谷歌翻译
在本文中,提出了针对遥控道路车辆的转向动作自适应巡航控制方法(ACC)。为了使车辆保持安全状态,ACC方法可以覆盖人类操作员的速度控制命令。安全状态被定义为可以安全停止车辆的状态,无论操作员采用哪种转向措施。这是通过首先采样各种潜在的未来轨迹来实现的。在第二阶段,假设风险最高的轨迹,则优化了安全舒适的速度轮廓。这为车辆提供了安全的速度控制命令。在模拟中,将方法的特性与能够覆盖指挥转向角度和速度的模型预测控制方法进行比较。此外,在使用1:10尺度的车辆测试的远程运输实验中,即使操作员的控制命令会导致碰撞,提议的ACC方法也可以确保车辆的安全。
translated by 谷歌翻译
We study the problem of combining neural networks with symbolic reasoning. Recently introduced frameworks for Probabilistic Neurosymbolic Learning (PNL), such as DeepProbLog, perform exponential-time exact inference, limiting the scalability of PNL solutions. We introduce Approximate Neurosymbolic Inference (A-NeSI): a new framework for PNL that uses neural networks for scalable approximate inference. A-NeSI 1) performs approximate inference in polynomial time without changing the semantics of probabilistic logics; 2) is trained using data generated by the background knowledge; 3) can generate symbolic explanations of predictions; and 4) can guarantee the satisfaction of logical constraints at test time, which is vital in safety-critical applications. Our experiments show that A-NeSI is the first end-to-end method to scale the Multi-digit MNISTAdd benchmark to sums of 15 MNIST digits, up from 4 in competing systems. Finally, our experiments show that A-NeSI achieves explainability and safety without a penalty in performance.
translated by 谷歌翻译
Speech to text models tend to be trained and evaluated against a single target accent. This is especially true for English for which native speakers from the United States became the main benchmark. In this work, we are going to show how two simple methods: pre-trained embeddings and auxiliary classification losses can improve the performance of ASR systems. We are looking for upgrades as universal as possible and therefore we will explore their impact on several models architectures and several languages.
translated by 谷歌翻译
The Makespan Scheduling problem is an extensively studied NP-hard problem, and its simplest version looks for an allocation approach for a set of jobs with deterministic processing times to two identical machines such that the makespan is minimized. However, in real life scenarios, the actual processing time of each job may be stochastic around the expected value with a variance, under the influence of external factors, and the actual processing times of these jobs may be correlated with covariances. Thus within this paper, we propose a chance-constrained version of the Makespan Scheduling problem and investigate the theoretical performance of the classical Randomized Local Search and (1+1) EA for it. More specifically, we first study two variants of the Chance-constrained Makespan Scheduling problem and their computational complexities, then separately analyze the expected runtime of the two algorithms to obtain an optimal solution or almost optimal solution to the instances of the two variants. In addition, we investigate the experimental performance of the two algorithms for the two variants.
translated by 谷歌翻译
To mitigate climate change, the share of renewable needs to be increased. Renewable energies introduce new challenges to power grids due to decentralization, reduced inertia and volatility in production. The operation of sustainable power grids with a high penetration of renewable energies requires new methods to analyze the dynamic stability. We provide new datasets of dynamic stability of synthetic power grids and find that graph neural networks (GNNs) are surprisingly effective at predicting the highly non-linear target from topological information only. To illustrate the potential to scale to real-sized power grids, we demonstrate the successful prediction on a Texan power grid model.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
Force modulation of robotic manipulators has been extensively studied for several decades. However, it is not yet commonly used in safety-critical applications due to a lack of accurate interaction contact modeling and weak performance guarantees - a large proportion of them concerning the modulation of interaction forces. This study presents a high-level framework for simultaneous trajectory optimization and force control of the interaction between a manipulator and soft environments, which is prone to external disturbances. Sliding friction and normal contact force are taken into account. The dynamics of the soft contact model and the manipulator are simultaneously incorporated in a trajectory optimizer to generate desired motion and force profiles. A constrained optimization framework based on Alternative Direction Method of Multipliers (ADMM) has been employed to efficiently generate real-time optimal control inputs and high-dimensional state trajectories in a Model Predictive Control fashion. Experimental validation of the model performance is conducted on a soft substrate with known material properties using a Cartesian space force control mode. Results show a comparison of ground truth and real-time model-based contact force and motion tracking for multiple Cartesian motions in the valid range of the friction model. It is shown that a contact model-based motion planner can compensate for frictional forces and motion disturbances and improve the overall motion and force tracking accuracy. The proposed high-level planner has the potential to facilitate the automation of medical tasks involving the manipulation of compliant, delicate, and deformable tissues.
translated by 谷歌翻译
Vision and language models (VL) are known to exploit unrobust indicators in individual modalities (e.g., introduced by distributional biases), instead of focusing on relevant information in each modality. A small drop in accuracy obtained on a VL task with a unimodal model suggests that so-called unimodal collapse occurred. But how to quantify the amount of unimodal collapse reliably, at dataset and instance-level, to diagnose and combat unimodal collapse in a targeted way? We present MM-SHAP, a performance-agnostic multimodality score that quantifies the proportion by which a model uses individual modalities in multimodal tasks. MM-SHAP is based on Shapley values and will be applied in two ways: (1) to compare models for their degree of multimodality, and (2) to measure the contribution of individual modalities for a given task and dataset. Experiments with 6 VL models -- LXMERT, CLIP and four ALBEF variants -- on four VL tasks highlight that unimodal collapse can occur to different degrees and in different directions, contradicting the wide-spread assumption that unimodal collapse is one-sided. We recommend MM-SHAP for analysing multimodal tasks, to diagnose and guide progress towards multimodal integration. Code available at: https://github.com/Heidelberg-NLP/MM-SHAP
translated by 谷歌翻译